Posts Tagged ‘Botany’

Sunday, August 15, 2010

ADK Urges Hikers: Brush Off Invasive Species

The Adirondack Mountain Club (ADK) is urging hikers to give their boots a good brushing after each hike to remove any seeds of invasive plant species and help prevent their spread to other wild areas.

“Because of the rapid spread of invasive species such as garlic mustard, Japanese knotweed and wild parsnip, hikers should include a whisk broom or brush as part of their hiking gear,” said Neil Woodworth, executive director of the Adirondack Mountain Club. “By giving your boots or shoes a good brushing before leaving the area, you can help prevent seeds from spreading to the next trail you hike.” » Continue Reading.


Saturday, August 14, 2010

Wildflowers: Adirondack Lobelia Varieties

Late summer is lobelia season, and the Adirondacks are a great place to find these beautiful flowers, the most stunning of which is the cardinal flower (Lobelia cardinalis). Most lobelias, however, are not red; they are various shades of blue. Here in New York we have seven species of lobelia (including cardinal flower), and today I want to introduce you to Lobelia inflata, commonly known as Indian tobacco.

I encountered Indian tobacco for the first time this summer. I was busy photographing some ladies tresses when I saw this lovely pale blue flower blooming nearby. I took a couple photos to identify later, and promptly returned to the orchids. When I looked at the photos the next day, I knew I had a lobelia, but was unsure which kind. As soon as I knew which species it was, I decided I needed to learn more. After all, a plant with the name “Indian tobacco” must surely have an interesting history. Into herbals and books on ethnobotany I delved.

As it turns out, Indian tobacco has a rather long and well-documented history of medicinal uses among many of our native peoples. The most common uses involved remedies for a variety of respiratory ailments, such as asthma, bronchitis, pneumonia and coughs. I was surprised to learn that the plant was smoked to treat asthma. Coltsfoot is another plant that has traditionally been smoked for asthma and other bronchial disturbances. Is it just me, or does this seem counterintuitive? I mean, if one is having difficulty breathing, does it make sense to inhale smoke for a treatment? This is another example of “things that make you say ‘hm’.”

The plant was probably named “tobacco” because when broken it produces a scent similar to tobacco, and apparently it tastes like tobacco, too. Not having ever used tobacco, or sampled this lobelia, I can neither confirm nor deny these statements. However, the active chemical ingredient in the plant is lobeline, which has similar effects on the body as nicotine. In fact, some folks believed Indian tobacco could be used to help people quit smoking. Several products containing lobeline used to be available for just this purpose, but in 1993 the FDA determined that they were ineffective (the products, not the FDA) and prohibited their sale.

More recent studies, however, suggest that lobeline might be helpful in the treatment of persons with drug addictions. Medicinally, this is a plant to watch.

Many lobelias grow in damp, if not down right wet, conditions, but not Indian tobacco. This species prefers dry sites and is often found growing along roadsides. It’s actually a fairly common plant, most likely overlooked because its small flowers (one-quarter inch long) are not all that showy at a distance. Up close, however, they are quite attractive, with three petals pointing downward, and two sticking up, kind of like little blue ears above a wide blue beard.

When the seedpods develop, the reason for the species name inflata becomes apparent: they look like inflated bladders. In fact, for novice botanists this might be one of the best identifying traits to look for when trying to ID this plant.

As the summer draws out and the cicadas sing, it’s time to seek out the lobelias. Walk along roadsides, walk along lake shores. Look for pale blue or bright red flowers, with three petals hanging downward, and two pointing up. They are funny-looking flowers, but delightful to find.


Wednesday, August 11, 2010

Purple Loosestrife and the Adirondacks

I was recently on a road trip to and from the beautiful state of Maine. The trip took me across Lake Champlain, through the agricultural and ski lands of Vermont, zipping down the forest-lined highways of New Hampshire, and then into Maine itself, where I briefly visited the coast before heading upstate to Augusta. As beautiful as each of these states is, there was one thing they all had in common: purple loosestrife.

I know, you are thinking “we’ve got purple loosestrife here in New York, too – even in the Adirondacks,” and you would be correct in this thought. But let me tell you – the Adirondacks have nothing compared to these other states, where this elegant purple flower is thick as thieves in every body of water I passed – be it fresh or salt. I was bowled over by how far its reach had stretched, and how established it had become. » Continue Reading.


Wednesday, August 4, 2010

Bladderworts: Pretty, But Deadly Adirondack Natives

What child hasn’t read about carnivorous plants? Usually by the time we are in 4th or 5th grade, someone we know has discovered the Venus Fly Trap, that classic carnivore of the floral world. But one needn’t travel to the tropics, or even The South, to discover the joy of plant carnivory. Right here in the Adirondacks we have pitcher plants and sundews, two carnivores that are popular in their own right. But we also have bladderworts, smaller and less unusual (at least on the surface – they look like snapdragons), but no less deadly. These are plants worthy of our attention.

New York is home to fourteen species of bladderworts, four of which are threatened and one that is endangered. Some species float in the water, while others are “rooted” in the soil at the water’s edge (bladderworts don’t technically have roots). Most sport bright yellow flowers that rival birdsfoot trefoil for brilliance, but two come in shades of pale purple, making them a delightful find.

Bladderwort – the name is bound to make one chuckle. It sounds funny and brings some funny images to mind. “Wort” comes from the Anglo-Saxon language, and it simply means “plant.” The “bladder” part of the name does not refer to an excretory system, however. If one pulls up a bladderwort, one will see all sorts of little pouches, or bladders, clinging to the plant. These bladders are the dangerous part of the plant.

Bladderworts come in two basic varieties up here: free-floating aquatics and terrestrial. Despite the name, terrestrial species (which make up about 80% of the world’s bladderwort species) are actually not growing high and dry – they are found in saturated, water-logged soils. This is because bladderworts must have water in order to get their food.

In a nutshell, here’s how it works. The bladders, which look kind of like little helmets, are more or less flat when they are set. When they are set, they are in a state of negative osmotic pressure. Across the opening to the outside world, each bladder has what is essentially a lid. Attached to the lid are the trigger hairs. When a small creature brushes by the trigger, a lever-like action takes place. Where the hair attaches to the bladder, it levers an opening in the seal around the lid. Once this seal is broken, the vacuum is released, the lid flies open, and the surrounding water (and its contents) are sucked into the bladder. When the bladder is full, the lid closes and calmness is restored…at least in the water. All of this happens in the tiniest fraction of a second.

Meanwhile, within the bladder, dire things are happening. Digestive enzymes and bacteria get to work on the prey. Prey items vary in size and species depending on the species of bladderwort involved. The free-floating bladderworts have larger bladders and can take on larger prey, sometimes capturing fish fry, mosquito larvae and even small tadpoles. More likely, however, they are eating things like water fleas and nematodes. The terrestrial species, with their smaller bladders, are consuming things like protozoans and rotifers, microscopic creatures swimming through the watery soil.

The rate of digestion depends on the size of the prey. Some food can be digested quickly, in a matter of minutes, while other items take hours, or even days, to be consumed. When the food had been completely reduced to soup, special cells extract the slurry, transporting it into the stem of the plant, once more creating a vacuum in the bladder. The trap is now reset and ready for its next victim.

While reading up on the digestive habits of these plants, I found myself grateful that they are so small. Can you imagine a bladderwort large enough to engulf a human? No body of water would be safe for swimmers! This could be the stuff of horror movies (giant bladderworts grow near nuclear reactors…swimmers and watercraft are warned to stay out of the water…)!

Science fiction aside, these are some pretty interesting, and highly sophisticated, plants. Bladderworts can be found in many of the Adirondack’s lakes, ponds, bogs, and even along streams and rivers. While they tend to prefer acidic water, some do very well in more alkaline conditions. If you are paddling along and see what look like bright yellow snapdragons sticking above the water’s surface, you have probably found a free-floating species. Reach in and lift out the leafy mass to see the bladders, but be sure to return it to its watery home when you are done.


Wednesday, July 21, 2010

Second Glance: Mimicry and Speckled Alder Syndrome

Nature is full of little tricks. Just when you think you know something, it turns out that the one you are looking at is something else. It’s enough to drive a naturalist nutty, but it’s also the driving influence that will force a naturalist to hone his/her observation skills.

Back in my undergraduate days, we had a professor who described the whole look-at-only-one-characteristic-and-draw-a-conclusion scenario as Speckled Alder Syndrome, stated with one’s hand open, palm facing one’s face about an inch from one’s nose. In other words, you are only seeing one thing and ignoring everything else that will help you make a correct identification.

I admit it: I suffer from Speckled Alder Syndrome.

In all fairness, however, Mother Nature does conspire against us. And by “us” I mean all living things in general. From plants to reptiles, butterflies to parasites, the world is full of mimicry – living things that copy the looks of other living things all in an effort to deceive.

Mimicry comes in a variety of flavors: Batesian, Mullerian, Emsleyan, Wasmannina, Gilbertian, Browerian…and more. Most of us learn the basics of mimicry in high school biology, and usually by graduation we’ve forgotten all of it, except perhaps some of the examples, like monarch and viceroy butterflies.

What American child hasn’t grown up knowing about monarch butterflies? These large orange and black flappers are easy to identify and are the stuff of many an elementary school lesson on metamorphosis. Almost any child can recognize a monarch caterpillar, chrysalis and butterfly at a hundred paces. Well, maybe ten paces, but you get the idea.

Enter the viceroy. This is the butterfly we all learn about in biology as the one that mimics the monarch. There are a few differences that the trained eye can pick up, such as the smaller size, the extra black line across the hind wings, and the row of white spots that dot the black border band of those hind wings.

To the untrained eye, however, they look the same. This is mimicry at its best. Up until only a few years ago (the 1990s), everyone believed that the viceroy, thought to be a tasty morsel, was mimicking the monarch. We knew that monarch caterpillars ate milkweed, and that the sap from the milkweed made them taste bad. As adults, the bright orange and black coloration served to warn predators to leave them alone or suffer an upset stomach, or maybe even death.

What tasty morsel wouldn’t want to copy this? Why, if I taste good to predators, I’d want to make them think I taste bad so they would leave me alone. What better way to do so than to copy something that tastes bad? This is known as Batesian mimicry: something harmless mimicking something harmful.

As it turns out, however, viceroys also taste bad! As larvae, they feed on trees in the willow family (willows, poplars, cottonwoods). These trees contain salicylic acid, the stuff from which aspirin is made. Birds, or other predators, that eat a viceroy get the same reaction that some people get when taking regular aspirin: it tastes bitter and can cause an upset stomach. There are no buffered viceroys out there. One taste, and the predator will never again eat something that is orange and black. Mission accomplished.

This kind of mimicry, where you have two harmful species that look similar, is called Mullerian mimicry.

The viceroy’s mimicry doesn’t end here, though. As a caterpillar, and as a pupa, it takes on the appearance of a bird dropping. That’s right. The caterpillars are green and white, while the pupae are brown and white. What bird is going to snack on the previously digested remains of some other bird?

Then you have Emsleyan mimicry, where something deadly looks like something that is slightly less harmful. How can we be sure this isn’t just another case of Batesian, where something harmless looks like something dangerous? It all comes down to learning. If I eat something deadly and thus perish, how will I ever learn not to eat that thing? On the other hand, if I eat something that only makes me sick, I am likely to avoid anything that looks like the offending food. Therefore, by mimicking something less harmful, the deadly species increases its chance of being left alone.

Some forms of mimicry apply only to plants, some apply only within a single species. It’s enough to make the mind whirl.

I am learning not to take everything at face value. Most of the time I am not in such a hurry that I cannot take the time to take a second glance. Good observation skills are worth their weight in gold. You never know – you might just discover something new, even if it is only new to you.


Wednesday, July 14, 2010

Cattails: A Wetland Favorite’s Useful History

The other evening I was walking along the shoreline of a local wetland, enjoying the songs of the thrushes, the ripples made on the water by insects and small fish, and the rustle of the tall, emergent vegetation in the light breeze. The edges were muddy – sometimes completely barren and squishy, while in other places thick with plants. Life was everywhere.

When we think of wetlands, the plant that most likely comes to mind is the cattail, with its green, sword-like leaves and brown corndog-like flowerheads. It is a plant that is known around much of the world. In some places, like parts of Africa, it is considered a menace, choking waterways and aiding and abetting the spread of malaria. Historically, though, especially in North America, this plant has helped pull humanity through harsh winters where cold and starvation could’ve had the final say.

Cattails are in the grass family, as are many of the plants we now depend upon for food (corn, wheat, rye, millet). Like its modern-day counterparts, the cattail is a highly edible plant. Practically the entire plant is edible at various times of the year. In late spring when the base of the leaves are young and tender, they can be eaten raw or cooked. As summer approaches, the stem, before the flowerheads develop, can be peeled and eaten like asparagus. Soon the male flower is growing, and before it ripens, it can be cooked and eaten like corn on the cob. Once it’s ripe and producing pollen, the pollen can be harvested and added to baked goods as an extender for flour and a thickener for sauces. From late fall until spring, the rhizomes, those horizontal stems that grow underground, can be dug up and eaten like potatoes.

Historical utility didn’t end with food. Throughout the Northeast, native peoples collected cattail leaves to sew into siding for their homes. Wigwams were the housing of choice in the Northeast. These structures were constructed first from poles stuck into the ground and bent into a dome-like shape. More saplings were tied horizontally to the sides, creating a sturdy framework. The outside of this framework was then covered with some sort of mat, or shingles made from bark, depending on what was available. Where wetlands dominated, cattail leaves were sewn into mats that were tied to the wigwam. Early Europeans commented on how weather-proof these homes were – warmer and drier than the structures made by the more “civilized” settlers.

A variety of medicines were made from cattails. The roots were used to treat kidney stones, wounds, whooping cough and sprains. The downy seed fluff was applied to bleeding wounds and burns.

But wait – there’s more! Leaves were bundled together and sculpted into the shape of ducks to be used as decoys. Not only were these decoys used to attract real waterfowl, but also to lure in other animals that considered waterfowl food, like wild canines. Cattail leaves were also made into dolls and other toys, woven into bags, baskets, mats and hats. The dried flowerheads could be dipped in grease or wax and lit to provide a slow-burning light that smoked extensively, effectively keeping insects at bay. The seed fluff was used as tinder, stuffed into bedding and pillows, and during WWII was stuffed into life vests and seats cushions for tanks and airplanes.

The usefulness of this plant is not limited to historic records and a few modern foragers, though. Several scientists are studying the economic viability of converting cattails into ethanol. Currently, about 95% of our country’s ethanol is made from corn, which is an energy intensive crop (it needs a lot of water, and a lot of petroleum is also consumed in its production). Corn yields about 200 gallons of ethanol per acre. Sugar cane is also converted into ethanol, at about 640 gallons per acre.

Cattails, on the other hand, need very little encouragement to grow. In fact, many of the ethanol studies are growing them in sewage lagoons that are the by-products of hog farms. Not only do the cattails clean and purify the water in which they are grown, but when they are converted into ethanol, they can produce up to 1000 gallons per acre. There seems to be a fair amount of promise in this.

Two species of cattails are found in New York (and the Adirondacks): common cattail (Typha latifolia) and narrow-leaved cattail (T. angustifolia). The Revised Checklist of New York State Plants also lists “Cattail”, a hybrid of these two species.

Common, or broad-leaved, cattail is, well, pretty common. Odds are if you see a cattail, this is it. Its brown flowerhead is about an inch thick, and the leaves are also about an inch wide. Narrow-leaved cattail is also fairly common, but more so along coastal areas. Its flowerheads are narrower – about as thick as a finger (about half an inch wide), as are the leaves. From a distance you can usually tell if you are looking at a narrow-leaved cattail if the upper male flower spike is separated from the lower female flower spike by a space (see photo). On common cattails, the male flower spike sits right on top of the female spike.

This highly useful plant is one that everyone should get to know. Once you learn some of the nifty history of this plant, you will want to then study the critters that find it useful. Birds, mammals and insects all have a stake in this plant. It is worthy of our attention. Once the weather cools off a bit, find yourself a patch of wetland and spend some time with the cattails. I promise, you won’t be disappointed.


Saturday, July 10, 2010

Council Releases Plan to Combat Invasive Species

The New York State Invasive Species Council has submitted its final report to Governor David Paterson and the State Legislature. The report, titled “A Regulatory System for Non-Native Species,” recommends giving the Council authority to develop regulations for a new process that will prevent the importation and/or release of non-native invasive species in New York’s waterways, forests and farmlands. » Continue Reading.


Saturday, July 10, 2010

Adirondack Natives: Sweaty Days and Sweat Bees

The big news item this week is the heat. Hazy, hot and humid days envelop us in their muggy warmth, driving most of us indoors to sit by fans or luxuriate in the cool blasts from air conditioners. How fortunate we are to live where these options exist. Still, I needed fodder for today’s column, so I grabbed the camera and went stalking subject matter in the butterfly garden. I lucked out with a close encounter with a sweat bee.

Not much was moving in the garden – even the wildlife seemed to be seeking shelter from the heat. But one bright metallic green bee was busily foraging on a milkweed flower and I was able to capture her image.

Many nature photographers are drawn to metallic-colored insects: they are just so photogenic. And, as odd as it seems, there are a lot of them. Bees, flies, beetles – it seems that almost every major group of insects has at least one metallic representative.

My little find turned out to be Augochlora pura, one of the Halicids, or sweat bees. Sweat bees get their name from the fact that they are attracted to sweaty people – they crave the salt that is on our damp skin. But we should exhibit caution around them, for they also pack a powerful sting.

One theory for the existence of the metallic coloration is that it serves as a warning that these insects are dangerous, at least in the case of these bees. When the sun hits their bodies, they glitter and sparkle with greens, blues and coppers. For most insects, the metallic coloration is a result of structure. The hard exoskeleton is made of chitin, a colorless substance that gives the insect support, kind of like a corset. Cracks, fissures, scales or hairs on the chitin refract any light hitting it, bouncing it back in a spectrum of colors.

Usually found along wooded edges, A. pura is noted for its choice of nesting material. Most Halicids nest in the ground, but A. pura prefers soft, decaying wood for building her nest cells.

A typical day for A. pura goes something like this: morning arrives and it is time to forage for pollen. Pollen collecting continues until the afternoon, when the female bundles the pollen into a ball and places it in a nest cell. She lays her egg and caps the cell. During the night, she excavates another cell for tomorrow’s egg and awaits the dawn, when it is time to forage once more.

During the course of a summer, two or three generations of A. pura emerge into the world. Come fall, however, things change. Females that were lucky enough to mate crawl into wooden chambers in the base of decaying logs and there they wait for spring. The males die off. In the spring, the females lay their eggs, and the cycle begins again.

Augochlora pura is a solitary bee, and one of our important native pollinators. I’ve mentioned the plight of wild pollinators before, but it never hurts to repeat an important subject. As more and more land is converted from its natural wild state into monocultures of self-pollinating crops (corn, wheat, rice, soybeans), monocultures called lawns, or just plain pavement and buildings, our native bees find less and less food, and thus produce fewer and fewer young.

With the decline in honey bee populations, it is really in our own selfish best interest to do what we can to encourage native bee populations. Without them, the foods that we eat that are not self-pollinating (most fruits and vegetables) will no longer be available.

I encourage everyone to take the time to get to know some of our native bees, and to make the back yard a more bee-friendly place. This can be done by letting parts of our lawns “go wild,” eliminating local ordinances that require all lawns to be cut and managed to within an inch of their lives, and planting native vegetation before we plant non-natives. It doesn’t take much, but it can make a world of difference to our small flighted brethren.


Wednesday, July 7, 2010

Adirondack Outdoor Hazards: Poison Ivy

Lately I’ve been enjoying a close, personal relationship with a plant we all know by reputation if not from direct experience. It is the plant version of the skunk – the name alone conjures reactions that may or may not be deserved. It is reviled and feared. And yet, it fills a vital link in the ecosystems around us. Today, I give you poison ivy, Toxicodenron radicans.

Even if they’ve never seen it, children can describe poison ivy: it has three red leaves! As we all know, reputations, while usually founded on some morsel of truth, often become wildly exaggerated and the truth left behind in the dust. So, let’s start off on the right foot with a correct description of this plant.

First, its leaves are composed of three leaflets. A leaflet can look like a full-fledged leaf to the untrained eye. The key is that a leaf has a stem (petiole) that attaches directly to the twig of the tree/shrub/plant. Think of your fingers. Together they make up a hand, but you wouldn’t call each finger a hand, would you?

When these leaflets first emerge, they might have a reddish tinge to them, and in the fall they can turn red, too. But to claim that year-round they are red would be misleading. Look for green, for this is the dominant color. You also want to look for teeth (jagged edges). And bilateral symmetry. Bilateral what? Bilateral symmetry means that if you were to hold a poison ivy leaf (with its three leaflets all intact) in front of you, with the center leaflet pointing upwards, you could fold it right in half, down the middle of that middle leaflet, so that the left leaflet lies right on top of the right leaflet, and it would match up almost perfectly. The left side is a mirror image of the right side.

Poison ivy is a native plant. It likes wooded understories, but also does well in rocky, disturbed areas. This is not a plant that seems to be too choosy about where it puts down roots. Sometimes it grows as a dense ground cover. Other times it grows as a vine, using hairy rootlets to attach itself a tree or fence post. Where it becomes established, it can be difficult to eradicate.

In the spring, PI blossoms right along with other early bloomers. Its flowers are white, grow in clusters, and are probably missed by most passersby since they are neither large nor showy. As summer progresses, the flowers that were successfully fertilized become white berries, which are an important food source, especially in winter, for lots of wildlife, namely birds.

And here is where the men are separated from the boys. Or the wildlife from the humans. Y’see, most wildlife, be they birds or mammals, are immune to the effects of urushiol, the oil that is the cause of all the problems we associate with this plant.

Urushiol can be dreadful stuff if you are allergic to it, and most of us have some level of sensitivity. All parts of the plant (the leaves, stem, flowers, fruit, bark, roots) contain this oil. Sometimes just brushing against the plant is enough contact to cause distress, while other times one needs to really crush it to get a reaction. I don’t recommend the latter.

I always prided myself on not being sensitive to PI, but I also kept in mind that this could be simply because I know what the plant looks like and have done well to avoid contact. Until recently.

Some of my readers may recall that about three weeks ago I was down at the Ice Meadows and simply had to try and photograph the flowering partridge berries. They were, of course, nestled down below a robust growth of PI. Throwing caution to the wind, I lay down on the very narrow herdpath and snapped away with the camera. I never got a good shot of the flowers, but about a week later the itching began.

At first I thought it was a bug bite – I’d been gardening and the ants have been known to crawl up my pant legs and nip away. A few days later, the “bite” had turned into three or four bites, and they really were beginning to itch. Then the area was the size of a quarter. By the time it became palm-sized, I was beginning to think “um, these aren’t ant bites…I think I have poison ivy.”

Sure enough, the local medical staff confirmed that I had a healthy rash going on my leg. Calamine lotion wasn’t helping much, so I invested in an industrial strength version, and started taking Prednisone and Benedryl. Another week has passed and I think the worst is over, although random individual blisters are appearing in other locations.

Here are some PI facts:

• Urushiol is water resistant. In other words, it doesn’t just rinse away. Soap and water, these are important. Wash well as soon as you come into contact. Get that stuff off as fast as you can.

• Once you have removed the oil, it cannot spread.

• The blisters, when they form, are filled with your own body’s fluids – not more urushiol. If
they burst or ooze, the liquid is not going to spread the rash.

• If the rash seems to be spreading, there are a couple rational explanations. One, you are getting more of the oil on you from a source (like your pants, or boots, or the dog, or the furniture you sat on while wearing your contaminated clothes). Two, the newer eruptions are occurring on parts of your skin that are either less sensitive or received a smaller dose of the oil and simply took longer to react.

• The oil can linger for years. I read on one website that people got reactions from contaminated artifacts that had been in a museum for over a hundred years.

When I teach people to go out and enjoy the outdoors, one of the things that I cover right up front is “know your local hazards.” This may seem like common sense, but as a society we have become so disassociated from the outdoors that we often need these reminders. The “wild” can be dangerous, but if you know what to look for, it is no more dangerous than your basement. Hazards can be cliffs, raging waters, nests of bees. They can also be the weather, plants and animals. Learn to identify what’s in your neighborhood, and you won’t have to worry so much about unplanned encounters.

That said, wild clematis and box elder are often confused with poison ivy. These are harmless native plants that grow around much of the Adirondack Park. Knowing how to tell them apart from PI is useful. If in doubt, however, treat the unknown as unfriendly and don’t risk unnecessary contact. Better safe than sorry, eh?


Thursday, July 1, 2010

Remembering Ketch: Educator and Conservationist

Dr. Edwin H. Ketchledge died peacefully yesterday. He was 85.

“Ketch,” to all who knew him, was a botanist, teacher and founder of the Summit Steward program, a 20-year collaborative effort to educate hikers and protect vulnerable alpine plants that cling to the Adirondacks’ highest summits.

He was veteran of the 10th Mountain Division’s Italy campaign. Surviving that experience inspired Ketch to live a meaningful life. He dedicated himself to Adirondack conservation, botany and teaching.

Dr. Ketchledge was a distinguished teaching professor of environmental and forest biology at the State University of New York College of Environmental Science and Forestry.

He authored one of the essential Adirondack field guides, Forests & Trees of the Adirondack High Peaks Region, first published by Adirondack Mountain Club in 1967. He understood the Adirondack landscape in both paleo and poetic terms.

“The forests we see around us now are unique; they have no analogs in the past. Interglacial conditions have been here for only 40 tree generations of time,” he wrote. “The outwardly stable forests we see in our human lifetime are more correctly understood as dynamic populations of competing species, adjusting as necessary over centuries of time to variations in the proverbial balance of nature: that so-called ‘balance’ is more truthfully an episodic teeter-totter!”

He worked in the High Peaks for more than 40 years, surveying, mapping and restoring alpine meadows. His belief that people would take responsibility for protecting the meadows if they were informed about them has been validated by the success of the Summit Steward program, which teaches hikers on-site about the mountaintop ecosystem.

Arrangements are incomplete with the Garner Funeral Home in Potsdam. Gifts in his memory may be made to the Summit Steward program, in care of the Adirondack Chapter of the Nature Conservancy, and to SUNY-ESF.

Photograph of Ketch on Whiteface Mountain, courtesy of Kathy Regan


Wednesday, June 23, 2010

Adirondack Wintergreens: A Plethora of Pyrolas

Now that summer is here, finding woodland wildflowers can be more of a challenge. Gone are the flashy, brightly blossomed sprites that flourished in the spring sunshine. The dark shade cast by the trees and shrubs hides the nourishing rays of our closest star. Still, if one takes the time to look, and knows where to cast one’s gaze, one can find a few shy flowers that prefer the dimmer light. I give you the pyrolas.

Pyrolas, commonly known as wintergreens, even though they are not THE wintergreen made famous in flavorings and linaments, are small inconspicuous plants that dot many of our forest floors. Overall they are unimpressive, their leaves no more than a green rosette that clings tightly to the ground. But from the center of this rosette rises a slender stalk, and from this stalk the flower(s) droop(s).

Most common in our mixed northern woods is shinleaf (Pyrola elliptica). Its flowers are a greenish white, and, like all pyrolas, hang downwards as though the plant were nodding off to sleep. If you tilt a blossom upward and take a close look (a hand lens comes in real handy about now, or a macro lens on your camera), you’ll see some of the other traits of this clan of flowers.

For example, sticking out from the center, extending well beyond the reach of the petals, is the style – part of the female productive system. The tip of the style supports the stigma, which is the part that receives the pollen. On pyrolas, the stigma is flared, or sometimes lobed, and it acts as a landing platform for the flower’s insect pollinators, most of which are flies.

Surrounding the style are the stamens, the male parts. At the tip of each stamen is the anther, which produces the pollen. Now, what’s really cool about the anthers is that they look like straws: hollow at the tip. Go ahead and grab a hand lens and take a good close look. The tips have holes! They remind me of some of the anemones one sees waving about on coral reefs. It is from these holes that the pollen is shed.

The pollen, which you will not likely see, is sticky. When the flies come in to sup at the flower, the pollen is shed upon and sticks to their furry bodies. The flies travel from flower to flower, and the pollen is transferred from their bodies to the sticky stigma. From here the pollen travels down the style to the ovary and voila! the plant is fertilized.

Pyrolas are fascinating in other ways as well. For example, they have a close relationship with the local fungi. The soil all around us is full of mycelia, the vegetative structures of many fungi. The pyrolas are what scientists call mycoheterotrophs, meaning they acquire nutrients by feeding off these mycelia. It’s a parasitic relationship. In and of itself, this isn’t all that unusual, for many forest plants have similar relationships with fungi. What makes the pyrolas stand out, however, is that they can also survive completely photosynthetically – they can make their own food. It seems that the parasitic relationship is optional for them. From what I’ve been able to determine in the literature, the exact nature of this plant’s relationship with (and without) the fungi is not well understood. There could be a good research project in this, just waiting for the right graduate student to unlock the secret.

Recently I’ve been fortunate enough to see several of our local pyrolas in bloom, including the pink, or bog, pyrola (P. asarifolia), which is a threatened species in New York State. With a little scouting around our forest floors, especially damp woodlands, you, too, can add shinleaf pyrola, one-flowered pyrola (P. secunda), one-sided pyrola (Moneses uniflora), green-flowered (P. virens)* and round-leaf pyrola (P. rotundifolia) to your life list. And if the flower gods are smiling on you, you can also add the pink pyrola, a real treat to any nature nut, even if flowers are not your passion.

* this is the one pictured above


Tuesday, June 15, 2010

A Short History of the Moose River Plains

The Moose River Plains Wild Forest, sitting between Route 28 and the West Canada Lake Wilderness in Hamilton and Herkimer counties, is a bit of an Adirondack political and natural history wonder.

The gravelly, flat, grassy “plains” of the Moose and Red Rivers are a significant contrast to the rest of the Adirondack Park and one of it’s more unique (and popular) features. Although it’s hard to know for sure, indications from various studies and permit requests suggest that about 50,000 people use the plains each year (not including the some 500 campsites bordering the area, and the incidental use generated by those in the hamlets of Inlet, Raquette Lake and Indian Lake). “The Plains,” as the area is known, was also the site of one of the region’s legendary environmental conservation fights of the last 100 years. » Continue Reading.


Saturday, June 12, 2010

Adirondack Plants: Indian Cucumber Root

Now is the time to hit the woods if you want to find Indian cucumber root (Medeola virginiana), for not only are its two-tiered leaves quite visible, but it is now bursting into blossom, and these are flowers you simply have to see.

Indian cucumber root is a member of the lily family, which to many of us seems odd, since lily leaves look rather like green tongues sticking out of the ground. However, if you look closely, you will see that the veins on the leaves run parallel to each other on the cucumber root as well as the other lily family members. This is a trait to look for when you are out botanizing.

When the plant is young, or when it lacks the energy to reproduce, it produces only one whorl of leaves. At this point in time, it is easily mistaken for starflower, although the latter’s leaves vary in size from less than an inch to almost three inches, and the leaf veins are not parallel to each other (it is not a lily). When conditions are right, however, stand back and wait to be impressed.

In some areas where it grows, Indian cucumber root can reach heights upwards of two feet. About half way up, it sports a whorl of five to nine leaves, all the same length. From the center of this whorl, the stem continues its skyward journey, ending in a second set of about three smaller leaves. There is nothing else out there that looks like this.

From now until the end of the summer, when you find one of these plants, you should look beneath the upper set of leaves for the yellowish-green nodding flowers. Take a close look at these flowers, for they are quite intriguing. The pale petals fold back, like a Turk’s cap lily, and from the center emerge three long reddish styles (part of the female reproductive bits) and several purple stamens. The color combination is striking, and the styles almost give the flower a spidery appearance.

Once fertilized, the flowers slowly convert into fruits. During this conversion, the flowers lose their droop. The pedicles straighten so that the purple-blue berries stand erect above the top tier of leaves.

Many people are most interested in this plant’s edibility. Historically, the native peoples of eastern North America dug the rhizomes* for food as well as medicine. The small white rhizomes, which measure only one to three inches in length, are reputed to have a cool, crisp, cucumbery taste, and are good eaten raw or lightly cooked with other vegetables. Doug Elliot, who is famous for his wildcrafting, writes that he took first place at the Fryeburg Fair for his Indian cucumber root pickles.

Today, however, the plants are not terribly common, and in Florida and Illinois they are listed as endangered. Because most of us do not need to wildcraft for our food, it is best to simply file away the information about the edibility of this plant under the category of interesting plant lore rather than actually harvesting it for a meal. Also, we should keep in mind that plants growing on state land are all protected by state law, so it is not legal to harvest them.

Edibility aside, this is still a spiffy plant, and one that is very easy to identify in the moist woodlands of the Adirondack Park. A quick jaunt down any of the VIC’s trails will likely yield at least a half-dozen of these plants. Stop on by and take a gander at them.

* Rhizomes are essentially horizontal stems, which usually grow underground. Stolons are also underground stems, but they sprout off from the main stem. Tubers, which the edible part of Indian cucumber roots are often called, are the swollen tips of rhizomes or stolons and are used by the plant for storage (eg: potatoes).


Tuesday, June 8, 2010

Let’s Eat: Adirondack Ginseng

American ginseng (Panax quinquefolius), a perennial herb, once proliferated along the eastern seaboard from Maine to Alabama. It is similar to Asian ginseng (Panax ginseng), and was one of the first herbs to be harvested and sold commercially. The name “ginseng” comes from the Chinese word “jen-shen” which means “in the image of a man,” a reference to the shape of the mature root, which resembles the human body.

Wild ginseng in China and Korea has been relatively rare for centuries, a result of over harvesting. It was discovered in central New York in 1751. By the late 18th century, Albany, New York had become a center of trade in ginseng. Most Adirondack ginseng was exported to China where it was (and is) used as a popular remedy.

By the middle of the 19th century, wild American ginseng was in danger of being eradicated by “shang” hunters, who dug up the brittle roots for sale to wholesale enterprises. Horticulture experts and private citizens alike experimented with cultivating the herb.

The September 5, 1906 issue of the Malone Farmer featured a front-page ad: “Wanted—People to grow Ginseng…Any one can do it and grow hundreds of dollars worth in the garden. Requires little ground.” F.B. Mills, of Rose Hill, NY, provided seeds and instructions (at cost) and a promise to buy the mature roots at $8.00 per pound.

Ginseng farming takes patience. It grows in cool, shady areas, in acidic soils such as are found in hardwood forests. The larger and older the root—which can live 100 years or more—the more it is worth. Ginseng is relatively easy to cultivate, but one must wait for the plants to mature over the course of 5-10 years before seeing a return on investment.

Nevertheless, by the turn of the 20th century, ginseng farming was common, and held the promise of great profit. The July 16, 1908 edition of the Fort Covington Sun ran a headline proclaiming “PUT GREAT FAITH IN GINSENG. Chinese Willing to Pay Fabulous Prices for Roots.” In 1904 a Plattsburgh paper reported that L.A. Childs of Chazy “will make an extensive exhibit of this product at the coming Clinton county fair, and this will be the first public exhibit of it ever made in Northern New York.” Three years later Miss Melissa Smith of St. Johnsville, “probably the only woman in America who grows ginseng for a living,” was reported to have roots valued at more than $10,000.

The actual medical benefits of ginseng have been disputed in Western medicine for centuries. The September 19, 1900 issue of the Malone Farmer expressed the opinion that “The ginseng trade is the most extraordinary in the world. American doctors believe it to be practically valueless as a medicine, or at the most about as potent as licorice.” Users claim it increases energy, prolongs life, and induces a feeling of wellbeing.

The Adirondack Museum’s permanent collection includes this ginseng root harvester, used in Franklin County during the late 19th century. Ginseng is never pulled from the ground. Whole, unbroken roots have the greatest value. This tool was used to dig the soil around the plant, some six inches away from the stem. Once the soil around the root was removed, the shang hunter could lift the root out and carefully brush away the dirt.

The market value of ginseng has risen and fallen over the centuries, but it remains an important forest crop. In 1977, the US Fish and Wildlife Service imposed restrictions on the sale of ginseng under the Convention on International Trade in Endangered Species. New York State, as well as most states in the Northeast, tightly regulates the sale and harvest of ginseng. No wild ginseng may be harvested on state lands.

Photo: Ginseng Root Harvester Found in Tupper Lake, NY ca. 1850-1890. Courtesy the Adirondack Museum (2001.38.2).


Saturday, June 5, 2010

Water Avens: Understated Wildflower Elegance

It was about three years ago that I first stumbled upon water, or purple, avens (Geum rivale), a native perennial of some of our soggier soils. I was walking along the Sage Trail, just crossing the boardwalk that rises above a boggy area, when my eyes were caught by a rather unusual flower. It’s purplish, brownish, reddish, yellowish colors stood out while at the same time serving to conceal the flower in its sun- and shade-dappled home. I plunked myself right down on the boardwalk and took out my field guide; I had to know what it was.

Since then, I have encountered water avens on several occasions, and every time I stop and marvel, for this unassuming wildflower is yet another perfect example of one of Mother Nature’s hidden beauties. Not showy like pink ladies slippers, not fragrant like balsam poplar, not social like daisies, it hangs out in habitats that are seldom visited by casual travelers, where its subtle coloration keeps it fairly well hidden.

Water avens is in the rose family, and I’ve seen photographs of the flower that show a definite rose-like form, but when I look at it, I’m more readily reminded of columbines; perhaps that is because dark outer sepals protect the often yellow inner petals, a combination seen in our wild columbines. Not only that, but the flowers droop, their faces hang towards the ground, another columbine-like quality.

When it comes into bloom, this flower attracts several insect pollinators, primarily bumble bees, but also a few flies (like the syrphids) and beetles. However, on the off chance that no insects come around, the plant has a back-up plan. As each flower grows, its stigmas (the female part) ripen first, which prevents self-pollination. Maturation continues, though, and the stamens (the male parts) continue to elongate as they ripen. Eventually the stamens shed their pollen on any remaining stigmas that have not already been cross-pollinated thanks to the efforts nectar- and pollen-seeking insects.

Once fertilized, hooked seeds develop. This is another great survival strategy, for thanks to those hooks, the seeds can hitchhike on the fur of some passing animal to take up housekeeping in a new location, thus spreading the range of the plant beyond its own back yard.

As I’ve mentioned in previous posts, I am interested in the uses to which people have put plants over the years. Some plants have rich histories, full of all sorts of lore and superstition. Others have nothing more to recommend them than their names and locations. I was expecting water avens to fall into the latter category, but one of its common names made me suspect I was wrong: chocolate root.

It turns out that water avens has quite an extensive history of usage, both medicinal and culinary. Many native peoples used it to treat a variety of ailments associated with the stomach, digestion, and even the common cold. In truth, it has anti-inflammatory properties, is antiseptic, and can induce sweating, making it good for treating fevers. I even read that the dried root can be used as a moth repellent. Its most intriguing use, however, was as a substitute for hot chocolate. The rootstock was boiled and made into a chocolate-like beverage. I knew I liked this plant!

Water avens is in bloom from now until the summer ends, so you have a pretty good chance of finding one if you visit wetlands. There is a fair amount of variation in the color of the petals, however. Some are purple, others pink, and still others are yellow. Regardless of petal color, the sepals are dark purple, and the flower droops – both characteristics that are bound to catch your eye. A delightful flower, it is well worth the search to find.



Support the Adirondack Almanack and the Adirondack Explorer all year long with a monthly gift that fits your budget.

Support the Adirondack Almanack and the Adirondack Explorer all year long with a monthly gift that fits your budget.